

Abstract — Transposition tables are one common method

to improve an alpha-beta searcher. We present two

methods for extending the usage of transposition tables

to chance nodes during stochastic game tree search.

Empirical results show that these techniques can reduce

the search effort of Ballard’s Star2 algorithm by 37

percent.

Keywords: Transposition Table, Stochastic Game Tree

Search, Pruning, Expectimax, Star1, Star2

I. INTRODUCTION

Decades of research into the alpha-beta algorithm have

resulted in many enhancements which dramatically improve

the efficiency of two-player deterministic game tree search.

In contrast, stochastic game tree search has received

considerably less attention. Hauk et al [1] recently re-

introduced an updated version of Ballard’s almost forgotten

Star2 algorithm [2], showing how the fail-soft alpha-beta

enhancement can be adapted to chance nodes, and extending

the algorithm to games with non-uniform chance events. In

the present work, we further explore how existing alpha-beta

enhancements can be adapted to improve the performance of

stochastic game tree search.

One important enhancement - widely used in Checkers

and Chess programs - is a transposition table, which is

employed to improve the move ordering of alpha-beta

searchers and to allow the algorithm to reuse previous search

work. While transposition tables have been used at min and

max nodes of a search tree [3,4], their usage at chance nodes

has not previously been addressed in the literature.

In the present work, we show in detail how the

transposition table improvement can be extended to chance

nodes. We introduce two complementary methods that use

the information present in the transposition table to reduce

the overall search effort at chance nodes.

II. STAR1 AND STAR2

Expectimax is a brute force, depth first game tree search

algorithm that generalizes the minimax concept to games of

chance, by adding a chance node type to the game tree. Star1

and Star2 exploit a bounded heuristic evaluation function to

generalize the alpha-beta pruning technique to chance nodes

[2]. Alpha-beta pruning imposes a search window [α,β] at

each min or max node in the game tree. The search through

successor nodes can be terminated as soon as the current

node’s value is proven to fall outside the search window.

Star1 and Star2 generalize this pruning idea to chance nodes,

but an important distinction needs to be borne in mind. At

min and max nodes, a single successor is sufficient to

terminate the search. However, at chance nodes it is

necessary to prove that the weighted sum of all successors

will fall outside the search window. Star1 achieves this by

starting with a wide search window and narrowing it for each

successive node, to a range that would be sufficient to

terminate the search, even assuming worst-case values for

the remaining unsearched nodes. The narrowed search

windows for each successor allow us to prune more heavily

at nodes further down the game tree.

Figure 2.1 illustrates the operation of the Star1 algorithm

at a chance node with three equally likely successors. We

assume that the values returned by the heuristic evaluation

function always lie in the range [-1.0, +1.0]. If the search

window of the chance (root) node is [-0.4, +0.1], then we are

only interested in obtaining an exact score if it lies within

this interval. If the score falls outside this window, we only

need to establish an upper or lower bound. The intervals

shown under each successor node indicate the Star1 search

window for that node. Once the left hand node has been

computed to have an exact value of 0.8, any value ≥0.5 for

the middle node will imply that the expectimax value for the

chance node is ≥0.1, thus allowing the search to be cut off

without exploring the right hand node.

Effective Use of Transposition Tables in Stochastic Game Tree Search

[-3.2, +2.3]

[-3.0, +0.5]

Figure 2.1 – Star1 Example.

0.8

≥ 0.5

≥ 0.1

3

1

chance

max

3

1

3

1

[α = -0.4, β = +0.1]

X

Joel Veness
†‡

Joel.Veness@nicta.com.au
Alan Blair

†‡

blair@cse.unsw.edu.au
†
National ICT Australia

‡
School of Computer Science and Engineering

University of New South Wales, Australia

If the stochastic game tree is regular, the Star2 algorithm

can be used [2]. Star2 further enhances the Star1 algorithm

by augmenting it with a preliminary probing phase that

searches one child of each successor node. This cheaply

establishes a lower bound on the score of each successor.

These lower bounds can be used to either prove that the

node’s score falls outside the search window, or to further

narrow the search windows of each successor for the Star1

part of the search.

Detailed analysis of Expectimax, Star1 and Star2 is given

by Ballard in [2] and by Hauk et al in [3] and [1].

III. TRANSPOSITION TABLE USAGE AT CHANCE NODES

A. Transposition Cutoffs for Chance nodes

In many games, there are multiple paths to the same node

in the game tree. In these games, it is possible to save search

effort by caching previous search results. This information

can allow us to either directly return a score, or narrow the

search window before searching any successors of a node.

We can apply these same techniques at chance nodes,

provided we have a suitable representation of the

information present at chance nodes.

A standard transposition table implementation contains

two procedures - store and retrieve. Typical transposition

table implementations for alpha-beta based searchers store

only a single score, and a flag to indicate whether this score

is an upper, lower or exact bound. This is insufficient to fully

capture the information that is present at chance nodes. This

is because we can have both upper and lower bound

information on the expectimax value of a node when we

terminate the search of its successors. Figure 3.1 shows a

graphical depiction of this situation.

At a node n, we have searched some number of successors.

The search window for this node is [α,β]. The information

gained from the already searched successors has narrowed

the expectimax score x for this node to the interval [a,b].

Since we know that x must be less than α, the Star1/Star2

algorithms will stop searching the remaining successors,

leaving us with upper and lower bounds for x. So that we do

not lose information about node n, we need to store both of

these bounds.

We can solve this problem by modifying the store

operation to record both an upper and lower bound on the

score for each position, along with their associated depths.

This new scheme allows us to store the usual upper, lower or

exact bound information at min/max nodes, whilst letting us

store independent upper and lower bounds at chance nodes.

The retrieve procedure simply returns all of the information

about a node from the transposition table.

These two modified routines are sufficient to implement

the transposition table cutoff idea. The associated

modifications to the Star2 algorithm are described in section

IV.

B. Successor Probing

The Enhanced Transposition Cutoff idea augments a

normal alpha-beta search with a preliminary transposition

table probing phase [5]. The transposition table is probed for

each successor. If any one of these entries has enough

information for us to exceed beta, we can terminate the

search immediately.

We can augment the Star2 algorithm with a similar

probing phase. The details for the stochastic case are more

complicated, since any bound information we get will be

useful, even if it doesn’t allow us to directly cutoff.

The algorithm is implemented as follows. If we are at a

chance node n that we are trying to search to depth d, we

look for all of the information contained in the transposition

table for each successor that is based on at least a depth d-1

search. Any information that the entry contains is either used

to immediately prove that the expectimax score is outside the

search window for this node, or stored and then used to

tighten the successor search bounds during the subsequent

Star2 and Star1 parts of the search.

Figure 3.2 gives an example where this additional probing

enhancement can help in practice. Suppose we are at the root

node, with a search window of [α,β]. Since we are using a

transposition table, we have a cache of previous search

results. Suppose that there exists an entry in the transposition

table for the third successor, and that this entry contains the

exact score for the successor node. If the expectimax value

of the root node is going to be less than alpha, then we

would like to prove this as early as possible. Retrieving

4

1

4

1

?

2

1

?

???

0.4

chance

Figure 3.2 – Illustration of Probing Enhancement.

β

α

a

b

max
Figure 3.1 – An example cutoff situation.

information from the table is much less expensive than doing

a full search, and this information from the transposition

table could save us from having to search some successors.

The probing enhancement ensures that we retrieve all useful

information from our transposition table before searching

any successors.

In practice, the probing enhancement could be relatively

computationally expensive. A simple way around this

problem is to limit the probing enhancement to chance nodes

with sufficient depth. This limit will of course be domain and

implementation dependent.

IV. IMPLEMENTATION

Figure 4.1 presents pseudo-code for the transposition table

enhanced Star2 algorithm, which we shall denote Star2-TT.

The additions required to employ transposition cutoffs at

chance nodes are shown in bold. The changes that are also

italicized constitute the probing phase used to implement our

stochastic analogue of the Enhanced Transposition Cutoff

idea.

The negamax function called in the Star1 component of

the code refers to a negamax formulation of an enhanced

alpha-beta search. The negamax-probe function called in the

Star2 component is the same as negamax, but with an

additional ProbingFactor argument which limits the number

of moves searched at the root. Because of this limiting

factor, the score returned and stored by negamax-probe is

only a lower bound.

We use the constants U and L to denote the absolute upper

and lower bounds on the scores returned by the heuristic

evaluation function. In our implementation, U=+1.0 and

L=-1.0.

 It is important to distinguish how we compute the search

window for each successor, compared to the pseudo-code

given by Ballard [2] and Hauk [1]. They are able to compute

the window incrementally, with a simple update rule. We

cannot use such a rule because we can never be sure of what

successor information will be determined from the

transposition table before we begin searching the successors.

At the beginning of Star2-TT, we initialize an array that

stores our current bound information for each chance event.

We denote this array as cinfo in the pseudo-code. Each

element in the array contains an upper bound, a lower bound

and the probability of that particular chance event occurring.

The upper bound for each successor is initially set to U,

whilst the lower bound is set to L. As we gain more

information about the successors throughout the various

stages of the algorithm, the corresponding entry in the array

is updated. At any time, we can compute the lower and upper

bounds, LB(n) and UB(n), on the current expectimax value of

a chance node n with N successors by computing:

)()()(
1

0

nLBnPnLB i

N

i

i∑
−

=

×=

Figure 4.1 Star2-TT Pseudo-code.

Score star2-TT(Board brd, Score alpha, Score beta, int depth) {

 if (isTerminalPosition(brd)) return TerminalScore(brd)
 if (depth == 0) return evaluate(brd)

 EventInfo cinfo[numChanceEvents()] // for successor bounds
 generateChanceEvents()

 // transposition cutoffs
 if (retrieve(board) == Success) {
 if (entry.ubound == entry.lbound &&
 entry.udepth == entry.ldepth &&
 entry.udepth >= depth) return entry.ubound
 if (entry.ldepth >= depth) {
 if (entry.lbound >= beta) return entry.lbound
 alpha = max(alpha, entry.lbound)
 }
 if (entry.udepth >= depth) {
 if (entry.ubound <= alpha) return entry.ubound
 beta = min(beta, entry.ubound)
 }
 }

 // successor probing using the transposition table
 for (i = 0; i < numChanceEvents(); i++) {
 applyChanceEvent(brd, i)
 if (retrieve(brd) == Success) {
 if (entry.ldepth >= depth-1) {
 cinfo[i].LowerBound = entry.lbound
 if (LB(cinfo) >= beta) {
 store(brd, depth, LB(cinfo), UB(cinfo))
 return LB(cinfo)
 }
 }
 if (entry.udepth >= depth-1) {
 cinfo[i].UpperBound = entry.ubound
 if (UB(cinfo) <= alpha) {
 store(brd, depth, LB(cinfo), UB(cinfo))
 return UB(cinfo)
 }
 }
 }
 undoChanceEvent(brd, i)
 }

 // Star2 probing phase
 for (i = 0; i < numChanceEvents(); i++) {
 Score cmax = childMax(cinfo, beta, i)
 Score bx = min(U, cmax)
 applyChanceEvent(brd, i)
 Score search_val = negamax-probe(brd,
 cinfo[i].LowerBound, bx, depth-1, ProbingFactor)
 undoChanceEvent(brd, i)
 cinfo[i].LowerBound = max(cinfo[i].LowerBound,search_val)
 if (search_val >= cmax) {
 store(brd, depth, LB(cinfo), UB(cinfo))
 return LB(cinfo)
 }
 }

 // Star1 phase
 for (i = 0; i < numChanceEvents(); i++) {
 Score cmin = childMin(event_info, alpha, i)
 Score cmax = childMax(event_info, beta, i)
 Score ax = max(L, cmin)
 Score bx = min(U, cmax)
 applyChanceEvent(brd, i)
 Score search_val = negamax(brd, ax, bx, depth-1)
 undoChanceEvent(brd, i)
 cinfo[i].LowerBound = search_val
 cinfo[i].UpperBound = search_val
 if (search_val >= cmax) {
 store(brd, depth, LB(cinfo), UB(cinfo))
 return LB(cinfo)
 }
 if (search_val <= cmin) {
 store(brd, depth, LB(cinfo), UB(cinfo))
 return UB(cinfo)
 }
 }

 store(brd, depth, LB(cinfo), UB(cinfo))
 return LB(cinfo) // LB(cinfo) == UB(cinfo) here
}

)()()(
1

0

nUBnPnUB i

N

i

i∑
−

=

×=

where Pi(n) denotes the probability of the i
th

 chance event,

and LBi(n)/UBi(n) denotes our current lower/upper bounds

on the expectimax value of the i
th

 successor.

We know the exact expectimax value of a node n if LB(n)

= UB(n). A straightforward implementation optimization,

that could be worthwhile if the number of chance events is

large, is to incrementally maintain the LB(n) and UB(n)

quantities.

Whenever we recursively call the negamax procedure

from a chance node n with a search window of [α,β], we

derive the search window from our current successor

information. This can be done by computing:

)(

)()()(
),(

nP

nUBnPnUB
inChildMin

i

ii ×+−
=

α

)(

)()()(
),(

nP

nLBnPnLB
inChildMax

i

ii ×+−
=

β

Thus the i
th

 successor has a search window of

[Max(L, ChildMin(n,i)), Min(U, ChildMax(n,i))].

These bounds are chosen so that if the negamax search call

returns a value in excess of ChildMax(n,i) or less than

ChildMin(n,i), then:

β≥)(nS or α≤)(nS

respectively, where S(n) denotes the expectimax value of

node n. For a derivation of these equations, see Hauk [1].

It is important to note that during the Star2 probing phase,

only the ChildMax routine is used in computing each

successor’s search window. This is because the negamax-

probe procedure can only return lower bounds on the

expectimax score of each successor.

V. EXPERIMENTAL SETUP

Our experimental framework used the game of Dice

created by Hauk et al [3]. Dice is a two player stochastic

game where players take turns placing checkers on an m by

m grid. Before each move, a die is rolled to determine the

row or column into which the checker must be placed. The

winner is the first player to achieve a connected “run” of k

checkers (horizontally, vertically or diagonally). In our

experiments, m=5 and k=4. The game of Dice is a prime

candidate for the transposition table improvement, since

many different lines of play can lead to the same position.

For deterministic game tree search, any monotonic

transformation of the evaluation function will result in the

same line of best play. However, for stochastic game tree

search, the evaluation function must estimate a value directly

proportional to the expected final reward (in our case, +1 for

win, -1 for loss, 0 for draw). With this in mind, a 2-layer

feed-forward neural network with 10 hidden nodes was

trained by self play in the same manner as Tesauro’s TD-

Gammon [6]. The network had 50 inputs for the raw board

encoding plus 4 inputs to store the number of “runs” of

length 2 and 3 for each player.

Our search algorithm incorporated several well known

move ordering techniques at min/max nodes. We used a

combination of transposition tables, the killer move heuristic

and the history heuristic in conjunction with iterative

deepening [7]. These move ordering techniques increase the

efficiency of the alpha-beta component and the Star2 probing

phase.

We used a Zobrist hash function [8] to map the Dice game

states to entries in the transposition table. The results were

generated with a 2.6 gigahertz AMD AthlonFX CPU, using

only one processor. 256Mb of memory were used for the

transposition table.

VI. RESULTS

We compared Expectimax, Star1, Star2 and Star2-TT. Each

of these four algorithms was evaluated on the same set of 50

test positions collected from self-play games. These

positions include a representative range of opening, middle

and end-game positions.

The results are summarized in Tables I and II:

TABLE I

NUMBER OF NODES SEARCHED TO DEPTH 13 (MILLIONS)

 Expectimax Star1 Star2 Star2-TT

Min 0.02 0.01 0.01 0.01

Median 13.93 3.99 3.24 1.79

Max 273.8 136.7 31.69 22.81

Mean 37.78 14.76 6.12 3.85

Std 54.67 24.38 7.01 4.70

TABLE II

TOTAL TIME FOR SEARCH TO DEPTH 13 (SECONDS)

 Expectimax Star1 Star2 Star2-TT

Min 0.44 0.27 0.31 0.27

Median 211 62.25 45.14 28.26

Max 4669 2326 487.8 374.1

Mean 609.1 238.1 88.55 60.83

Std 913.5 408.3 104.6 75.9

3 4 5 6 7 8 9 10 11 12 13
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Search Depth

N
o
d
e
s

Nodes vs Search Depth

Expectimax

Star1

Star2

Star2-TT

Figure 6.3 – Total nodes searched for each depth.

Figure 6.3 shows the average number of nodes searched

over our test positions, as the depth is increased.

Star2-TT shows on average a 37% improvement over

Star2 using depth 13 searches, in terms of nodes searched.

This is a significant performance improvement, and well

worth the implementation hassle for any competitive

stochastic game playing program.

Although it is theoretically possible in degenerate cases

for Star2 and Star2-TT to search more nodes than Star1, in

practice this does not happen. The savings given by the extra

probing phase more than outweigh the associated overhead.

The performance results on the time to depth metric are

strongly correlated with the number of nodes searched. This

is because the leaf node evaluation function takes up almost

all of the CPU time. Reducing the number of nodes in the

game tree means that fewer calls to the evaluation function

need to be made. The overhead associated with using the

transposition table is worthwhile. On average, it takes 31%

less time for Star2-TT to reach depth 13 compared to Star2.

Although our results generally agree with those found by

Hauk in [3], we noticed a larger difference between the

performance of Star1 and Expectimax. This could be due to

our evaluation being constrained to return scores from a

different interval, or due to differences in the alpha-beta

implementation.

VII. CONCLUSION

We have described how to effectively use transposition

tables at chance nodes in two-player stochastic game tree

search. This addresses an important gap in the stochastic

game tree search literature. We have shown that these

procedures, in combination with the Star2 algorithm, give a

37% reduction in nodes searched over plain Star2 for the

game of Dice at a search depth of 13. These techniques will

be useful for stochastic game tree searchers when applied to

games where many different lines of play can lead to the

same board state.

VIII. FUTURE WORK

A. Parallel Search

It is possible to parallelize the negamax algorithm [9]. It

would be interesting to investigate methods of splitting up

the search work at chance nodes, since the risk of performing

redundant work at chance nodes might be much lower than

for min/max nodes.

B. Search Window Adjustments

At some nodes, we might strongly suspect that we are going

to fall outside the search window for the current node. In

these cases, it could prove worthwhile to try to use narrow

window searches to prove that the node’s evaluation falls

outside the current search window. This has the potential to

save search effort because in general it is easier to prove that

a successor lies above or below some bound than it is to find

its exact score. If we can skip finding exact scores at some

nodes, we expect a performance improvement so long as we

can reliably determine where to use these narrow window

searches.

IX. ACKNOWLEDGEMENTS

National ICT Australia is funded by the Australian

Government's Department of Communications, Information

Technology, and the Arts and the Australian Research

Council through Backing Australia's Ability and the ICT

Research Centre of Excellence programs.

REFERENCES

[1] T. Hauk, M. Buro, and J. Schaeffer. Rediscovering *-Minimax.

Computers and Games conference, 2004.

[2] Bruce W. Ballard. The *-minimax search procedure for trees

containing chance nodes. Artificial Intelligence, 21:327-350, 1983.

[3] T. Hauk. Search in Trees with Chance Nodes. M.Sc. Thesis,

Computing Science Department, University of Alberta, 2004.

[4] T. Hauk, M. Buro, and J. Schaeffer. *-Minimax performance in

backgammon. Computers and Games, 2004.

[5] Jonathan Schaeffer and Aske Plaat. New advances in alpha-beta

searching. In Proceedings of the 24th ACM Computer Science

Conference, pages 124-130, 1996.

[6] G. Tesauro. Temporal Difference Learning and TD-Gammon.

Communications of the ACM, 38(3), March 1995.

[7] J. Schaeffer. The history heuristic and alpha-beta search

enhancements in practice. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 11(1):1203-1212, 1989.

[8] A. L. Zobrist. A new hashing method with applications for game

playing. Technical Report 88, University of Wisconsin, 1970.

[9] R. Hyatt, A High-Performance Parallel Algorithm to Search Depth-

First Game Trees, Ph.D. Dissertation, University of Alabama at

Birmingham, 1988.

